If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-2y-49=0
a = 1; b = -2; c = -49;
Δ = b2-4ac
Δ = -22-4·1·(-49)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-10\sqrt{2}}{2*1}=\frac{2-10\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+10\sqrt{2}}{2*1}=\frac{2+10\sqrt{2}}{2} $
| 4v-4v+2v=10 | | 2x+3-3x=8x+6-2 | | 60-18=a-24 | | 2.6+10.4=x | | 2{5+y}=18 | | 7x+12=3(5x-12( | | 15x+10x=-19 | | -3x+8=7+2x | | x–0.7=0.2 | | 15x+6x=15 | | 5x+4=2(4x+8)-3 | | 3(4+g)=g | | 5x+1-3(x+1)=9x+2 | | 2y+40=68 | | 7^2x=12 | | 10x+4=6x2 | | 19b+-b-4b+8=-20 | | -45=-0.5(x-7.1 | | 11d-3d-3=13 | | 40+55x-120=360 | | 12u-8u+3u-4=3 | | 2y+26=40 | | 3(6x=8)=24+18x | | 10s+-12s=-12 | | 28x+3=29x-1 | | 13=1/10y | | 10x+-8x+13x+9=-6 | | 32+x=197 | | x^2-3x+2.25=30.25 | | 0=r=17 | | 32+33/x=197 | | 2y+26=56 |